人工智能综述:让机器像人类一样思考

Firefox_Screenshot_2015-04-13T03-03-03.911Z

提起人工智能(Artificial Intelliegnce,AI),很多人会首先想起斯皮尔伯格导演的曾获2002年奥斯卡奖的科幻电影《人工智能》(AI),在电影里一对夫妇领养了一 个机器人作为自己的孩子,这个机器人可以像人一样思考,具有喜怒哀乐,在它的身上发生了许多的故事。这样的科幻情景离现实又有多远呢?我们不妨先从人工智 能的起源谈起。

长久以来,我们一直认为智能不只是人类所独有的,可以像人类一样进行推理和学习的机器是完全可能被制造出来的,然而事情却不像想的那样简单。

 

模拟人工智能

在百科全书上,人工智能的定义是”研究可以智能工作的机器的科学和工程”。不过一个 令人纠结的问题是:到底什么是智能?很多情况下,那些”不智能”的机器比我们聪明多了,比如普通的计算机程序可以将成千上万个数字的乘积,可以记录下银行 的大量款项,这已经超出了普通人的能力。可是,他们只是能正确地完成大量计算而已,还称不上真正的”智能”。只有某些人类特有的能力,像认出一张熟悉的 脸,指挥繁忙时段的交通或者学会一件乐器,才称得上真正的”智能”。

为什么制造一台智能机器这么难?这是因为,一般情况下,在给电脑编写程序之前,程序员知道他想让电脑做的任务是什么。可是,在人工智能领域,程序员要求电脑做正确的事情,可同时又不是很清楚事情到底是什么。比如我们让电脑去识别人脸,可是我们人类自己也不是完全清楚大脑是如何识别人脸的。

在 现实世界中,我们不仅要面对还要处理种种不确定性事件。比如你在达到一个目标前,受到诸多困难,你需要排除万难;你在驾车时,前方冲出一辆车,你需要转动 方向盘避免撞车;你在处理一项任务时,突然接到另一项重要任务,你需要随机应变。一个智能的电脑程序不仅能够按照既定计划完成任务,还能确保在不确定事件 发生的情况下完成任务。所以,真正的人工智能,必须能够感知周围环境的变化,并对此做出反应,适时改变和调整自己的行动,以期出色完成任务。

哲学起源

在 世界上第一台电脑问世之前的很多个世纪,人工智能的理念就已经初具端倪。亚里士多德提出的从假设得出结论的”三段论”就是一种机械式的逻辑推理方法。按照 他的理论,我们可以这样论述:一些天鹅是白的;所有天鹅都是鸟;所以,一些鸟是白的。如果用符号表示,即为:一些S是W;所有的S都是B;所以,一些B是 W。无论S、W、B代表什么,我们都可以得到正确结论。根据这样的构想,我们在没有完全弄清楚人脑是如何想问题的情况下,或许就可以建立出一套智能化系 统。

亚里士多德的构想为探寻人工智能的本质奠定了基础。然而,直到20世纪中期,电脑才变得足够复杂,能够真正测试一下这些构想。1948 年,英国布里斯托尔大学的研究人员格雷·沃尔特制造出一系列具有感光和学习能力的会移动的机器乌龟。其中一个名为艾尔西(Elsie)的机器乌龟可以自动 对环境做出反应,比如当电池电量快耗尽时,它就会自动降低对光线的敏感度。

1950 年,英国数学家阿兰·图灵提出,如果电脑可以和一个人谈话自如,我们应该”礼貌地”接受电脑可以思考的现实。不过,直到1956年,人工智能这个词语才被 正式提出来。在美国达特茅斯学院的一个暑期研讨会上,这个领域的早期创始者们共同提出了他们的愿景:如果学习的各种方式或智能的各种特征都可以从理论上进 行精确描述,那么,一台机器就可以模拟人的智能。似乎按照这样的目标快速发展,拥有真人一般智能的机器早晚会出现。

化整为零

20世纪60年代,研究人工智能的科学家们满怀梦想,信心十足,认为他们将在几十年内实现他们的目标,就像航天领域里,从第一架喷气式飞机到人类登上月球也只用了30年。为什么人工智能不可以拥有这样火箭般的发展速度呢?

事 实上,两者之间最大的不同之处在于,对于人工智能,我们找不到像F=ma和E=mc2那样既简洁又通用的公式。到了20世纪80年代,研究人员意识到,他 们既没有足够硬件也没有足够知识,来模拟人可以做的所有事情,于是整个领域被分成很多部分。以往研究人员的共同目标是制造一台拥有人类智慧的电脑,取而代 之的是,研究人员侧重研究这个宏大问题的某个方面,比如语音识别、计算机视觉、概率推理,甚至国际象棋这个小领域。

可喜的是,在每个分支领域,研究人员都取得重大突破。1997年,IBM的”更深的蓝”电脑击败了国际象棋冠军卡斯帕罗夫。”更深的蓝”电脑能在1秒内计算出2亿种可能性,从而推算出之后棋盘的走势,最终决定下一步怎么走棋。

“更深的蓝”电脑在这场需要高智能的象棋比赛中取得骄人成绩,然而,这位”专家”的技能有点单一,除了象棋比赛外,它什么都不会做,既不能和别人讨论下棋策略,也不会玩其他游戏。尽管它赢了世界象棋大师,但是没有人会把它错当作真人,它只是一台电脑。

人工智能的时间线

1950年,图灵提出,经过编程的电子计算机可以像真人一样回答问题

1956年,在美国达特茅斯学院的一个暑期工作坊上,这个领域的早期创始者们正式提出了”人工智能”这个词汇

1958年 Allen Newell和Herbert Simon预测在十年内,电脑可以击败国际象棋世界冠军,不过在现实中这整整花了四十年。

1961年,电脑解决了大学一年级程度的微积分题目

1965年,世界上第一个用于心理治疗的聊天机器人ELIZA,尝试着和人进行对话

1967年,STUDENT程序成功地解决了用文字描述的一道大学程度的代数题目

1973年,Freddy机器人通过视觉感知来定位和组装了模型

1974年,随着政府资助机构减少了对于人工智能研究的拨款预算,人工智能寒冬到来

1975年,斯坦福大学的Meta-DENDRAL程序发现关于分子的新规律,成果被发表在了美国化学学会的期刊上

1980年,自动行驶的汽车在慕尼黑大学里以90公里/小时的速度行驶

1988年,人工智能的主要形式变为基于不确定数据的概率推理,而不再是以往那样侧重于逻辑

1989年,美国航天局(NASA)利用自动聚类的电脑程序发现以往未知的几类恒星

1997年,IBM”更深的蓝”超级电脑击败了国际象棋冠军卡斯帕罗夫

1998年,由Hasbro生产的第一个人工智能的宠物Furby开始在美国出售;美国航天局(NASA)第一次有了完全由电脑程序自动控制的飞行器

2000年,Nomad机器人探索南极洲的偏远地区,采集气象观测样本

2004年,一个电脑程序可以比一个专业级真人飞行员更快地学会操纵遥控直升机

2007年,美国艾尔伯特大学的人工智能程序完全破解了西洋跳棋游戏

2011年,苹果的语音识别软件Siri可以让用户和iPhone对话;iRobot公司出售出了第600万个RooMBA吸尘器机器人

2012年,Google翻译做的翻译总量已经超过了所有人类翻译者所做的总合

2012年,通过10亿个连接,Google的人工智能神经网络可以去识别一些常见的物体,像人脸和猫

或许你没有意识到,其实你每天都在和人工智能打交道。它们帮你接通电话,审核你的信用卡交易,管理你的基金。它们还能从你的数码照片中识别你的脸,在你玩视频游戏时识别你的姿势,甚至帮助医生分析你的化验结果。

稿源:科学松鼠会,转载自:cnBeta

阅读更多

1 评论

  1. 张宇豪说道:

    可以吗?

发表评论

电子邮件地址不会被公开。